Computational Study of the Protonation of AlXH₂ and AlX₂H (X = F, Cl, and Br). Structures of AlXH₃⁺ and AlX₂H₂⁺ and Their Dihydrogen Complexes AlXH₅⁺ and AlX₂H₄⁺

A. El Firdoussi and A. Boutalib*

Département de Chimie, Université Cadi Ayyad, Faculté des Sciences Semlalia, B.P. 2390 Marrakech, Morocco

M. Solimannejad

Quantum Chemistry Group, Department of Chemistry, Arak University, 38156-879 Arak, Iran Received: May 1, 2003; In Final Form: June 24, 2003

Structures of protonated AlXH₂ and AlX₂H (AlXH₃⁺ and AlX₂H₂⁺) and their dihydrogen complexes AlXH₅⁺ and AlX₂H₄⁺ (X = F, Cl, and Br) were investigated using the ab initio method at the G2 level of theory. All the dihydrogen complexes involving hypercoordinated aluminum atom with a three-center two-electron (3c-2e) bond. The G2 calculated protonation energies of AlXH₂ and AlX₂H to form AlXH₃⁺ and AlX₂H₂⁺, respectively, were found to be highly exothermic. The possible dissociation of the cations AlXH₅⁺ and AlX₂H₄⁺ into AlXH₃⁺ and AlX₂H₂⁺ and molecular H₂, respectively, are calculated to be endothermic.

1. Introduction

There has been increasing experimental and theoretical interest in various types of donor acceptor complexes involving the Lewis acids AlH₃ and AlX₃ in recent years.¹⁻²⁰ Our group has shown that the stability of these complexes does not depend on the charge transfer and the donor-acceptor interaction was not based on a simple HOMO-LUMO mixture.¹⁵⁻²⁰ Recently, Olah and Rasul²¹ reported on the calculated structures and energies of the hexa-, hepta-, and octacoordinate alonium ions, AlH_6^+ , AlH_7^{2+} , and AlH_8^{3+} and related AlH_4^+ , AlH_5^{2+} , and AlH_6^{3+} ions. They have shown that the structure of AlH_4^+ is C_{2v} symmetrical with a three-center two-electron (3c-2e) bond. More recently, we have reported a theoretical investigation on the structures of protonated alane-Lewis base donor-acceptor complexes $H_4AlXH_3^+$ (X = N, P, and As) and $H_4AlYH_2^+$ (Y = O, S, and Se) as well as their neutral parents at the G2 level of theory.²² We have shown that all the monocations H₄AlXH₃-(YH₂)⁺ are Al-H protonated, involving hypercoordinated alane with a three-center two-electron (3c-2e) bond and adopt the C_s symmetry arrangement. We have also shown that the protonation energies of H₃AlXH₃(YH₂) to form H₄AlXH₃- $(YH_2)^+$ were found to be highly exothermic and the possible dissociation of the cations H₄AlXH₃(YH₂)⁺ into H₂AlXH₃(YH₂)⁺ and molecular H₂ are endothermic. In continuation of our work, we have now extended our investigation to the structures and energetics of protonated AlXH3⁺ and AlX2H2⁺ and their dihydrogen complexes $AIXH_5^+$ and $AIX_2H_4^+$ (X = F, Cl, and Br) by ab initio calculations. The relative stability of these protonated complexes are examined. The possible dissociation of the cations $AIXH_5^+$ and $AIX_2H_4^+$ into $AIXH_3^+ + H_2$ and $AIX_2H_2^+ + H_2$, respectively, are also examined. To the best of our knowledge, no comparative study of these complexes has been carried out.

2. Computational Details

Ab initio calculations were performed with the GAUSSIAN 98 program.²³ Geometry optimizations were performed at the

TABLE 1: G2 Total Energies (au) and Relative Energies (kJ/mol) of AlXH₃⁺ and AlXH₅⁺ Complexes

complex	energy	ΔE	complex	energy	ΔE
$AlFH_3^+$ (1a)	-343.26589	0.0	$AlClH_5^+$ (4a)	-704.43203	0.0
$AlFH_3^+$ (1b)	-343.24934	43.43	$AlClH_5^+$ (4b)	-704.41150	54.81
$AlFH_5^+$ (2a)	-344.44336	0.0	$AlBrH_3^+$ (5a)	-2816.09303	0.0
$AlFH_5^+$ (2b)	-344.42323	52.84	$AlBrH_3^+$ (5b)	-2816.07344	51.42
$AlClH_3^+$ (3a)	-703.25746	0.0	$AlBrH_3^+$ (6a)	-2817.26649	0.0
$AlClH_3^+$ (3b)	-703.23791	51.34	$AlBrH_3^+$ (6b)	-2817.24671	51.92

TABLE 2: G2 Total Energies (au) and Relative Energies (kJ/mol) of $AIX_2H_2^+$ and $AIX_2H_4^+$ Complexes

complex	energy	ΔE	complex	energy	ΔE
$\overline{\mathrm{AlF}_{2}\mathrm{H}_{2}^{+}\left(\mathbf{7a}\right)}$	-442.48950	0.0	$AlCl_2H_4^+$ (10a)	-1163.65269	0.0
$AlF_2H_2^+$ (7b)	-442.48687	7.70	$AlCl_2H_4^+$ (10b)	-1163.63334	50.79
$AlF_2H_2^+$ (7c)	-442.48457	12.93	$AlCl_2H_4^+$ (10c)	-1163.63267	52.55
$AlF_2H_4^+$ (8a)	-443.67328	0.0	$AlBr_{2}H_{2}^{+}$ (11a)	-5388.14855	0.0
$AlF_2H_4^+$ (8b)	-443.66222	29.04	$AlBr_{2}H_{2}^{+}(11b)$	-5388.13246	42.26
$AlF_{2}H_{4}^{+}$ (8c)	-443.66016	34.43	$AlBr_{2}H_{2}^{+}$ (11c)	-5388.13240	42.38
$AlCl_2H_2^+$ (9a)	-1162.47722	0.0	$AlBr_{2}H_{4}^{+}$ (12a)	-5389.32121	0.0
$AlCl_2H_2^+$ (9b)	-1162.46293	37.40	$AlBr_{2}H_{4}^{+}(12b)$	-5389.30469	43.39
$AlCl_2H_2^+$ (9c)	-1162.46248	38.70	$AlBr_{2}H_{4}^{+}\left(\mathbf{12c}\right)$	-5389.30455	43.72

MP2(full)/6-31G(d) level.²⁴ No symmetry constraints were imposed during the optimization process, and the geometry searches were carried out for a number of possible isomers to ensure the location of the global minimum. The zero-point vibrational energies (ZPE) are obtained from scaled HF/6-31G-(d) calculated frequencies (scaled by the factor 0.893).²⁴ For improved energy, the Gaussian-2 (G2) energies²⁵ were computed. This level of calculation has recently been satisfactorily used to calculate similar complexes.²²

3. Results and Discussion

Calculated G2 energies and relative energies are listed in Tables 1 and 2, respectively, for $AIXH_3^+$ and $AIXH_5^+$ and $AIX_2H_2^+$ and $AIX_2H_4^+$ complexes (X = F, Cl, and Br). G2 thermodynamics of the selected complexation and protonation processes are given in Tables 3 and 4. MP2(full)/6-31G(d)

Figure 1. MP2(full)/6-31G(d) optimized structures of 1-6 complexes.

TABLE 3:	Thermodynamics	(kJ/mol)	of the	Selected
Process	•			

		G2	
process	ΔE_0	ΔH_0	ΔG_{298}
$AlFH^+ + H_2 \rightarrow AlFH_3^+$ (1a)	-33.09	-37.70	-12.22
$AlFH_2 + H^+ \rightarrow AlFH_3^+$ (1a)	-684.38		
$AlFH_3^+$ (1a) + $H_2 \rightarrow AlFH_5^+$ (2a)	-29.16	-33.26	-3.35
$AlClH^+ + H_2 \rightarrow AlClH_3^+ (3a)$	-22.51	-26.61	-2.09
$AlClH_2 + H^+ \rightarrow AlClH_3^+ (3a)$	-707.97		
$AlClH_3^+$ (3a) + $H_2 \rightarrow AlClH_5^+$ (4a)	-21.55	-25.06	+4.10
$AlBrH^+ + H_2 \rightarrow AlBrH_3^+$ (5a)	-19.79	-23.14	-0.33
$AlBrH_2 + H^+ \rightarrow AlBrH_3^+$ (5a)	-717.22		
$AlBrH_{3}^{+}(\mathbf{5a}) + H_{2} \rightarrow AlBrH_{5}^{+}(\mathbf{6a})$	-18.66	-22.38	+7.03

optimized geometries for all species studied in this work are given in Figures 1 and 2.

AlXH₃⁺ and AlXH₅⁺. Two structures (C_s symmetry conformation) of protonated AlXH₂, Al–H protonated 1a, 3a, and 5a and X-protonated 1b, 3b, and 5b (Figure 1), were found to

 TABLE 4:
 Thermodynamics (kJ/mol) of the Selected Process

		G2	
process	ΔE_0	ΔH_0	ΔG_{298}
$AlF_2^+ + H_2 \rightarrow AlF_2H_2^+ (7a)$	-67.20	-71.76	-42.17
$AlF_2H + H^+ \rightarrow AlF_2H_2^+ (7a)$	-612.79		
$AlF_{2}H_{2}^{+}(\mathbf{7a}) + H_{2} \rightarrow AlF_{2}H_{4}^{+}(\mathbf{8a})$	-45.73	-50.17	-21.13
$AlCl_2^+ + H_2 \rightarrow AlCl_2H_2^+ (9a)$	-27.11	-31.88	-5.77
$AlCl_2H + H^+ \rightarrow AlCl_2H_2^+ (9a)$	-674.71		
$AlCl_{2}H_{2}^{+}(\mathbf{9a}) + H_{2} \rightarrow AlCl_{2}H_{4}^{+}(\mathbf{10a})$	-23.93	-28.16	+0.96
$AlBr_2^+ + H_2 \rightarrow AlBr_2H_2^+ (11a)$	-18.45	-22.72	+2.09
$AlBr_2H + H^+ \rightarrow AlBr_2H_2^+ (\mathbf{11a})$	-695.00		
$AlBr_2H_2^+ (\mathbf{11a}) + H_2 \rightarrow AlBr_2H_4^+ (\mathbf{12a})$	-16.53	-20.71	+8.20

be minima on the potential energy surface at the MP2(full)/6-31G(d) level of theory. Structures **1a**, **3a**, and **5a** are planar and contain a three-center two-electron (3c-2e) Al-H bond. Structures **1b**, **3b**, and **5b** are also planar and have a halogenonium ion with a slightly longer Al-X bond (1.932, 2.366,

Figure 2. MP2(full)/6-31G(d) optimized structures of 7-12 complexes.

SCHEME 1

and 2.496 Å, respectively for X = F, Cl, and Br). **1a**, **3a**, and **5a** are more stable than **1b**, **3b**, and **5b** by 43.43, 52.84, and 51.34 kJ/mol, respectively. This shows that the Al–H bond is a better donor than the halogen nonbonded electron pair in AlXH₂ system. The 3c–2e Al–H bond distances of **1a** and **3a** (2.022 and 2.049 Å for AlFH₃⁺, 2.090 and 2.093 Å for AlCH₃⁺) are slightly shorter than that of AlH₄⁺ (2.104 Å), and the 3c–2e Al–H bond distances of **5a** (AlBrH₃⁺) (2.134 and 2.138 Å) are slightly longer than that of AlH₄⁺. Protonation of AlXH₂ to give respectively **1a**, **3a**, and **5a** (AlXH₃⁺) were calculated to be exothermic by -684.38, -707.97, and -717.22 kJ/mol, respectively, for X = F, Cl, and Br, which are less exothermic than protonation of AlH₃ at the same G2 level of theory $(-738.06 \text{ kJ/mol})^{21}$

On the other hand, **1a**, **3a**, and **5a** can be viewed as complexes between the dicoordinated AlXH⁺ ion and molecular H₂. The complexation processes were computed to be exothermic (Scheme 1, Table 3). Similar complexation of AlH₂⁺ and H₂ leading to AlH₄⁺ is exothermic by -21.34 kJ/mol, at the same G2 level of theory. The same trends are observed at room temperature (298 K). These observations indicate that the complexes **1a**, **3a**, and **5a** are expected to be experimentally characterizable in the gas phase.

Further complexation of **1a**, **3a**, and **5a** with molecular H_2 leads to $AIXH_5^+$ (C_s symmetry conformations) **2a**, **4a**, and **6a**, which were found to be stable minima at the MP2(full)/6-31G-(d) level of theory (Scheme 1, Figure 1). All the $AIXH_5^+$ complexes contain a six-coordinate aluminum and two 3c-2e bonds. Formation of **2a**, **4a**, and **6a** complexes from **1a**, **3a**, and **5a**, respectively, are also exothermic processes. However, the complexation energy decreases when descending in the corresponding periodic table column, from the fluorine to the bromine atom. In comparison, complexation of AIH_4^+ with H_2 leading to hexacoordinate AIH_6^+ is indicated to be exothermic by -20.50 kJ/mol, at the same G2 level of theory.²¹

Complexation of **1b**, **3b**, and **5b** (C_s symmetry conformation) structures with molecular H₂ lead to C_1 symmetry monocations **2b**, **4b**, and **6b**, respectively (Scheme 2, Figure 1), which were calculated to be stable structures on the potential energy surface at the MP2(full)/6-31G(d) level of theory. They also contain a five-coordinate aluminum atom with a three-center two-electron (3c-2e) bond (Figure 1). The calculated complexation energies of **1b**, **3b**, and **5b** with molecular H₂ are -29.16, -21.55, and -18.66 kJ/mol, respectively. Indeed, the complexation energy decreases when descending in the corresponding periodic table column, from fluorine to bromine. At room temperature (298 K) the free energy change for the complexation processes are calculated to be slighly endothermic. This indicates that the ions **2a**, **4a**, and **6a** should be unstable at room temperature.

other hand, **2b**, **4b**, and **6b** (X = F, Cl, and Br) structures can be considered as a complex between AlH_4^+ and XH. Formation of **2b**, **4b**, and **6b** complexes were calculated to be exothermic by -100.25, -95.31, and -101.10 kJ/mol, respectively for X = F, Cl, and Br, at the G2 level of theory.

AlX₂H⁺ and AlX₂H₂⁺. Tree structures (C_s symmetry conformation) of protonated AIX_2H (X = F, Cl, and Br), Al-H protonated 7a, 9a, and 11a and X-protonated 7b,c, 9b,c, and 11b,c (Figure 2), were found to be minima on the potential energy surface at the MP2(full)/6-31G(d) level of theory. The C_s structures **7a**, **9a**, and **11a** are planar and also contain a 3c-2e Al-H bond. The structures 7b,c, 9b,c, and 11b,c are also planar and have a halogenonium ion with a longer Al-X bond (Figure 2). 7a, 9a, and 11a structures are, like $AIXH_3^+$ structures, more stable than 7b,c, 9b,c, and 11b,c structures, respectively (see Table 2). Protonation of AlX₂H to give respectively 7a, 9a, and 11a ($AIX_2H_2^+$) were calculated to be exothermic by -612.79, -674.71, and -695.0 kJ/mol, respectively for X = F, Cl, and Br, which are also less exothermic than protonation of AlH₃ (-738.06 kJ/mol)²¹ On the other hand, **7a**, **9a**, and **11a** can be considered as complexes of AlX_2^+ ion and H₂. The coresponding complexation processes were computed to be exothermic by -67.20, -27.11, and -18.45 kJ/ mol for X = F, Cl, and Br, respectively (Scheme 1, Table 4). Similar results are obtained for the complexation of AlXH⁺ and H_2 leading to AlXH₃⁺ at the same G2 level of theory. The same trends are observed at room temperature (298 K). Thus, these observations indicate that the complexes 7a, 9a, and 11a can be expected to be experimentally characterizables in the gas phase.

Complexation of **7a**, **9a**, and **11a** with molecular H_2 also give respectively $C_{2\nu}$ symmetry stable structures 8a, 10a, and 12a, which also contain a six-coordinate aluminum and two 3c-2e bonds (Scheme 1, Figure 2). The complexation processes are calculated to be exothermic by -45.73, -23.93, and -16.53 kJ/mol for X = F, Cl, and Br, respectively. Complexation of 7b,c, 9b,c, and 11b,c (C_s symmetry conformation) structures with molecular H_2 lead to C_1 symmetry monocations 8b,c, 10b,c, and 12b,c, respectively (Scheme 2, Figure 2), which were calculated to be stable structures on the potential energy surface at the MP2(full)/6-31G(d) level of theory. They also contain a five-coordinate aluminum atom with a three-center two-electron (3c-2e) bond. On the other hand, 8b,c, 10b,c, and 12b,c structures can be considered as a complex between AlX₂H₂⁺ (1a, 3a, and 5a) and XH. Formation of $AlX_2H_4^+$ (8b, 10b, and **12b)** from $AIX_2H_2^+$ and XH are also calculated to be be exothermic by -121.63, -93.76, and -101.0 kJ/mol, respectively, for X = F, Cl, and Br. These values are comparable to that obtained for the formation of AlXH₅⁺ from AlH₄⁺ and XH systems.

4. Conclusion

Structures of protonated AlXH₂ and AlX₂H (AlXH₃⁺ and AlX₂H₂⁺) and their dihydrogen complexes AlXH₅⁺ and AlX₂H₄⁺ (X = F, Cl, and Br) were investigated by the ab initio method at the G2 level of theory. All the dihydrogen complexes involved a hypercoordinated aluminum atom with a three-center twoelectron (3c-2e) bond. The G2 calculated protonation energies of AlXH₂ and AlX₂H to form AlXH₃⁺ and AlX₂H₂⁺, respectively, were found to be highly exothermic. The possible dissociation of the cations AlXH₅⁺ and AlX₂H₄⁺ into AlXH₃⁺ and AlX₂H₂⁺, and AlX₂H₂⁺, and AlX₂H₂⁺ and molecular H₂, respectively, are calculated to be endothermic. These observations indicate that the AlXH₃⁺, $AIX_2H_2^+$, $AIXH_5^+$, and $AIX_2H_4^+$ complexes are expected to be experimentally observable in the gas phase.

References and Notes

- (1) Jasien, P. G. J. Phys. Chem. 1992, 96, 9273.
- (2) LePage, T. J.; Wiberg, K. B. J. Am. Chem. Soc. 1988, 110, 6642.
- (3) Ball, D. W. J. Phys. Chem. 1995, 99, 12786.
- (4) Sakai, S. J. Phys. Chem. **1991**, 95, 7089.
- (5) Bates, S.; Dwyer, J. J. Phys. Chem. 1993, 97, 5897.
- (6) Edwards A. H.; Jones, K. A. J. Chem. Phys. 1991, 94, 2894.
- (7) Che, J.; Choe, H.-S.; Chook, Y.-M.; Jensen, E.; Seida, P. R.; Franci, M. M. *Organometallics* **1990**, *9*, 2309.
- (8) Atwood, J. L.; Bennett, F. R.; Elms, F. M.; Jones, C.; Raston, C. L.; Robinson, K. D. J. Am. Chem. Soc. **1991**, 113, 8183.
- (9) Marsh, C. M. B.; Hamilton, T. P.; Xie Y.; Schaefer H. F. J. Chem. Phys. **1992**, *96*, 5310.
 - (10) Haaland, A. Angew. Chem., Int. Ed. Engl. 1989, 28, 992.
- (11) Jonas, V.; Frenking, G.; Reetz, M. T. J. Am. Chem. Soc. 1994, 116, 8741.
- (12) Timoshkin, A. Y.; Suvorov, A. V.; Bettinger, H. F.; Shaeffer, H. F. J. Am. Chem. Soc. **1999**, 121, 5687.
- (13) Gardiner, M. G.; Raston, C. L. Coord. Chem. Rev. 1997, 166, 1.
 (14) Kuczkowski, A.; Schulz, S.; Nieger, M.; Schreiner, P. R. Organometallics 2002, 21, 1408.
- (15) Anane, H.; Jarid, A.; Boutalib, A. J. Phys. Chem. A 1999, 103, 9847.

(16) Jarid, A.; Boutalib, A. J. Phys. Chem. A 2000, 104, 9220.

- (17) Boutalib, A.; Jarid, A.; Nebot-Gil, I.; Tomás, F. J. Phys. Chem. A 2001, 105, 6526.
- (18) Boutalib, A.; Jarid, A.; Nebot-Gil, I.; Tomás, F. J. Mol. Struct. (THEOCHEM) 2001, 397, 179.
 - (19) Boutalib, A. J. Phys. Chem. A 2003, 107, 2106.
 - (20) Boutalib, A. J. Mol. Struct. (THEOCHEM) 2003, 397, 179.
 - (21) Olah, G. A.; Rasul, G. Inorg. Chem. 1998, 37, 2047.
 - (22) Boutalib, A. J. Phys. Chem. A 2002, 106, 8933.
- (23) Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.; Zakrzewski, V. G.; Montgomery, J. A.; Stratmann, R. E.; Burant, J. C.; Dapprich, S.; Millam, J. M.; Daniels, A. D.; Kudin, K. N.; Strain, M. C.; Farkas, O.; Tomasi, J.; Barone, V.; Cossi, M.; Cammi, R.; Mennucci, B.; Pomelli, C.; Adamo, C.; Clifford, S.; Ochterski, J.; Petersson, G. A.; Ayala, P. Y.; Cui, Q.; Morokuma, K.; Malick, D. K.; Rabuck, A. D.; Raghavachari, K.; Foresman, J. B.; Cioslowski, J.; Ortiz, J. V.; Stefanov, B. B.; Liu, G.; Liashenko, A.; Piskorz, P.; Komaromi, I.; Gomperts, R.; Martin, R. L.; Fox, D. J.; Keith, T.; Al-Laham, M. A.; Peng, C. Y.; Nanayakkara, A.; Gonzalez, C.; Challacombe, M.; Gill, P. M. W.; Johnson, B.; Chen, W.; Wong, M. W.; Andres, J. L.; Gonzalez, Head-Gordon, C. M.; Replogle, E. S.; Pople, J. A. *Gaussian 98*; Gaussian, Inc.: Pittsburgh, PA, 1998.
- (24) Pople, J. A.; Schlegel, H. B.; Binkly, J. S.; Frisch, M. J.; Whitside, R. A.; Hout, R. F.; Hehre, W. J. Int. J. Quantum Chem. Symp. 1981, 15, 269.
- (25) Curtiss, L. A.; Raghavachari, K.; Trucks, G. W.; Pople, J. A. J. Chem. Phys. 1991, 94, 7221.